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Abstract

In this paper, we investigate the decentralized multi-agent patrolling
problem for covering large areas using the Internet of Things (IoT) frame-
work. We use a network of stationary and moving IoT devices to aid pa-
trolling agents in satisfying the primary objective of uniform patrolling
of an environment. The approach uses minimal resources on an IoT
device that ensures secured message exchange through one-to-one com-
munication, conveys relevant information through minimal message ex-
change, and uses simple tricks for keeping relevant information for coor-
dination and decision making for moving vehicles. We propose a novel
local, reactive, decentralized patrolling strategy ‘MRPP-IoT’ Algorithm
which functions concurrently on these IoT devices. We implement and
test the algorithm on a realistic simulation framework built using SUMO
and ROS. Extensive performance analysis based on an evaluation met-
ric for patrolling and IoT device failure cases confirm that decentralized
multi-agent patrolling has prospects in the IoT framework. A compara-
tive study with benchmark algorithms conveys that our novel algorithm
for decentralized multi-agent patrolling satisfies the primary objective of
uniform patrolling and robust against new issues on faults in IoT devices
or requirement of every functional IoT device.

1 Introduction

Patrolling is a key part of any security protocol as it can both prevent as well
as detect the acts of crime. It has been already established ([13]) that the
presence of security personnel in a particular area/locality deters criminals or
other bad actors from carrying out violence. In addition, patrolling also helps
in identifying suspects by observing unusual behaviours. This task is inherently
multi-agent as, traditionally, Policemen (either in groups or individually) visit
different places in a defined schedule under the jurisdiction of their local unit.
Given the advancements in the fields of autonomous driving and computer vi-
sion, today we can explore the possibility of automating the patrol process and
eliminate humans. Various Multi Robot Patrolling Problems (detailed in Sec-
tion 2) have been developed to automate the patrolling process.
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The Multi Robot Patrolling Problem (MRPP) deals with planning of traver-
sal strategies for multiple autonomous vehicles patrolling a given environment.
A patrol strategy is said to be effective if the vehicles visit different locations
in the environment as often as possible. For the first time, the multi-agent pa-
trolling using an IoT (Internet of Things) methodology is investigated through
this work. More specifically, we propose a decentralized network of intercon-
nected IoT [15] devices that would support coordination among patrolling vehi-
cles. While the concept of IoT is new, its core is interconnection and extracting
useful information from this interconnection.

The majority of the relevant literature develops the MRPP problem from an
agents’ point of view. In particular, various possibilities of communication and
capabilities between the agents (vehicles) have been explored. While this is an
important direction, offloading the computations through a decentralized strat-
egy has the obvious advantage of avoiding dependency on a centralized station.
However, a decentralized MRPP strategy for patrolling an outdoor campus-like
environment using agents (vehicles) cannot assume complete communication be-
tween the vehicles distributed all around the campus as the extent of patrol is
spread over several square kilometers of area. To develop decentralized MRPP,
in this work, we suggest an alternate approach by setting up a network of IoT
devices of limited communication range and processing capabilities which help
patrolling agents in carrying out their task. While the patrolling agents carry out
surveillance, this network aids in decision-making for these agents. The devices
in this network communicate locally amongst themselves and with the patrolling
vehicles in their visit to the place of IoT device, thus maintaining the benefits of
secured one-to-one communication and decentralized approach. While IoT sup-
ports coordination among agents, it must facilitate high-level decision-making
for uniform patrolling by multiple agents. In reverse, the use of IoT introduces
a dependency on information exchange on these devices. Therefore, a detailed
study is needed to evaluate the patrolling performance under device failures.
Analyzing various cases of device failures also mimics the scenario of identifying
the redundancy in deployed devices.

In this work, we investigate the use of IoT for providing a solution for de-
centralized MRPP and summarize our contributions as follows:

• Proposed a novel technique for Multi Robot Patrolling using IoT devices
for a secured, decentralised decision making and robust solution against
device failures.

• Developed a local, reactive, decentralized algorithm (MRPP-IoT) to min-
imize Graph Idleness (defined in Section 3) with IoT devices at Junctions
as the decision making units.

• Analyzed patrolling performance of MRPP-IoT algorithm based on ex-
tensive and systematic set of simulations carried out on SUMO (a traffic
simulator). Comparison of the MRPP-IoT algorithm with two state of
the art strategies - Conscientious Reactive as well as Reactive with Flags
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[8] demonstrate the possibility of decentralised solution for MRPP that
maintains the uniformity of patrolling even during device failures.

The rest of the paper is organized as follows - Section 2 presents related
works from the literature on MRPP and multi-agent system based IoT develop-
ment. With the aim of connecting IoT devices with one-to-one communication
possibility to develop a decentralized MRPP solution, the problem setting and
objectives are formulated in Section 3. In Section 4, the proposed MRPP-IoT
algorithm is developed that renders the algorithms for IoT device and agents.
A systematic simulation results are presented in Section 5 to facilitate analysis
on patrolling performance of MRPP-IoT algorithm. As this work presents the
opportunity to use IoT for decentralized multi-agent patrolling, various direc-
tions to further explore the benefits of edge computing are discussed in Section
6.

2 Related Works

The investigation into MRPP started in the early 2000s, due to a confluence of
factors like, increase in computational power, increasing maturity of the Multi-
Agent domain, and others. MRPP can also be seen as a natural extension of
mapping and other coverage tasks, where the objective is to visit (cover) all
the locations (area) in the environment. In MRPP, the task of visiting all the
locations is to be done repetitively preferably not in the same sequence.

Different heuristics [8] under varied problem setups (for example, level of
communication between the agents) has been developed using the term Idleness.
Though the work in [8] is pioneering in many aspects, the empirical validation of
the strategies are done under ideal conditions. In [3], the area is discretized into
grids, and the agents negotiate to divide the grid cells amongst themselves. Each
grid cell has a priority associated with it specified using probability of an event
occurring at that location. Two strategies [6] based on dynamic task assignment
have been developed, the second of which is an auction based mechanism.

The objective of a generalized partitioning strategy [2] is to arrive at a min-
imum number of agents which can patrol the given environment constrained
by minimum frequency of visits. Each partition is assigned one or more agents.
Though the partitioning is possible in polynomial time, the strategy is valid only
for Outer planar Graphs. A graph partitioning based algorithm [11] partitioned
the given environment into similar sized sub-graphs which are then allotted per
agent. However, the partitioning method is not flexible for online applications.
In [12], a Bayes’ rule based strategy uses the conditional probability for travers-
ing any particular edge depended on the idleness of the node, the number of
visits to the node as well as how frequently that edge was traversed in the recent
past. In [16], the problem is formulated as an MDP and Q-learning is used to
obtain a strategy which reduced the idleness.

There have been many works in the sub-domain of adversarial patrolling
[1], [19]. The objective in adversarial patrolling is to make sure that the adver-
sary (intruder), cannot attack (intrude) the given environment. The perimeter
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setting is considered and probabilistic guarantees in terms of detecting the in-
trusion have been obtained. In [1], realistic assumptions are made in terms of
evolution of events (intrusion), non-deterministic nature of observability by the
sensors, etc. A few works (notably [9] and [10]) have also focused on setting up
their problem in realistic scenario, such as considering localization and sensing
issues, non-uniform performance of different agents etc. In [4], the objective
is to find the minimum number of agents which can be successful in intrusion
detection. The environment is described as a grid with different penetration
time for some target cells. A probabilistic guarantee is achieved that the target
cells can be reached before its penetration time by at least one of the robots.
However, the task of patrolling is not an object of interest.

The existing works under the ambit of MRPP have varied both in scope as
well as the extent to which they address the task. A few axes along which the
state-of-the-art techniques can be distinguished are as follows -

• Implementation - Online ([8, 6, 12]) vs Offline ([5], [11], [1])

• Environment Description - Perimeter ([9], [1]), Area ([3]), Graph ([5], [6])

• Problem Setting - Adversarial ([1], [19]) vs Non-adversarial ([2], [4])

• Coordination - Centralized ([11], [1]) vs Decentralized ([6], [3])

• Approach - Graph Theoretic ([5], [2]), Heuristic ([8]), Task Assignment
([6], [10]), Negotiation Based ([3]), Learning Based ([12], [16])

• Results - Deterministic ([11], [5]) vs Probabilistic ([1], [4])

• Bounds and Limits - Theoretical ([5], [11], [1]) vs Statistical ([12], [6], [16])

In the last decades, many IoT applications are emerging out, and it is indeed
the future of communication that has transformed Things (Objects) of the real
world into smarter devices. There are multi-agent scenarios that are being ex-
plored to take advantage of the IoT framework. The similarities in dealing with
the interconnection of multiple agents or devices enable such an opportunity [18].
Multiple UAVs are explored as edge IoT devices [17] for restoring network under
emergency situations. Edge IoT concept is further used for offloading computa-
tions [Shen˙2019˙ACM˙Sensor˙Network] from the data intensive centralized
computations. Investigation of MRPP from IoT gives an opportunity to explore
decentralized and secured implementation of local (range-based) communication
protocol. The information exchange about visited along with visiting areas, and
accordingly, decision making for each patrolling agent are the key for effective
patrolling. The IoT devices will make it easier, secured, deployable and fault-
tolerant solution in real scenarios. We can use the same IoT network for smart
city monitoring [14] or managing any other natural or man-made catastrophe
that warrants action to save lives and to protect property, public health, and
safety. To the best of our knowledge, no work has analysed the MRPP from
IoT perspective and provided meaningful information on system performance
due to faulty devices.
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The decentralized approach for solving MRPP has a possibility of deploy-
ment over large area with secured communication links between IoT Devices.
The direct implementation of existing patrolling strategies under decentralized
methodology is to be explored and a detailed comparative analysis of these direct
implementations in IoT framework is fruitful to quantify system performance
for effective patrolling.

3 Problem Formulation

We represent the patrolling environment using a directed graph G(V, E) where
each junction is represented by a node v ∈ V and each road segment from
junction v to junction w by an edge (v, w) ∈ E 1. For a node v, we denote the
in-coming neighbours by Nin(v) = {w|(w, v) ∈ E} and the out-going neighbours
by Nout(v) = {w|(v, w) ∈ E}.

We use the time interval between consecutive visits to the nodes by patrolling
vehicles as an evaluation criteria. For this purpose, we use the notion of Idleness
(introduced in [8]) at time t defined as follows:

• The time elapsed since the last visit to a node v ∈ V by any patrolling
vehicle is referred to as its Instantaneous Idleness (or simply, Idleness)
and is denoted by Iv(t).

• The Node Average Idleness (or simply, Node Idleness) Īv(t) of a node
v ∈ V is given by,

Īv(t) =
1

t

∫ t

0

Iv(τ)dτ

.

• The Graph Instantaneous Idleness IG(t) is given by,

IG(t) =
1

|V|
∑
v∈V

Iv(t)

.

• The Graph Average Idleness (or simply, Graph Idleness) ĪG(t) is given by,

ĪG(t) =
1

t

∫ t

0

IG(τ)dτ

.

Now, the patrolling objective is stated as follows: For a given environment
(represented by G(V, E)) with N patrolling agents, minimize the Graph Average
Idleness ĪG(t) over the duration of patrol.

We consider two sets of IoT devices in their minimal hardware requirement
form for enabling one-to-one communication for security -

1We assume, for simplicity, that there exists only one road segment going from junction v
to junction w
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1. Junction Device: These are devices placed at each node v of G represent-
ing junctions in the road network. Each device has a minimal memory,
processing and communication units. The memory unit stores the Idle-
ness values of the neighbouring nodes. The on-board processor is able to
carry out primitive operations like changing the values stored in memory
and performing comparisons between different values. The communication
unit has both transmitter and receiver to communicate with neighbouring
junctions and the agent visiting the node v.

2. Agent Device: Each patrolling agent (vehicle) is equipped with a receiver
unit which can receive instructions from the Junction devices. On reach-
ing a particular junction, this device requests the corresponding Junction
Device for the next edge to traverse. This next edge information is taken
as an input by the vehicle’s navigation system.

Figure 1: An illustration of directed graph representing an environment with
Junction Devices placed at every nodes. Failed Junction devices are marked in
red. Arrows show direction of traversal

In the suggested novel decentralized setting (more details in Section 4)
wherein the decision making units are the stationary Junction Devices placed
at the nodes. For each node v ∈ V, the Junction Device at v maintains the
Idleness of node v and nodes in Nout(v) based on agents’ visits to these nodes.
The information exchange between nodes is as follows - The Junction Device
placed at node v receives data from Nout(v) and sends data to Nin(v). Such
that each Junction Device obtains information about all of its out-going neigh-
bours. Obtaining information from outgoing neighbors as against incoming ones
is relevant as the patrolling agents (vehicles) visiting a node can go only to one
of its out-going neighbours.
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A failed Junction Device implies that it is not able to communicate either
with those placed at neighbouring nodes or with the agents in its vicinity. Such
failures can occur due to power failures or malfunctioning of the devices. It
is important to accommodate for such failures in an algorithm which will be
applied in realistic settings. Furthermore, analysing the effect of a few failed
devices gives the possibility to reduce the number of IoT devices in the envi-
ronment, thereby avoiding redundancy of IoT devices and the range limits of
one-to-one communication. In particular, the requirement of placing IoT de-
vice at each and every junction and failures in the placed device need thorough
investigation. Therefore, in our analysis, we also consider situations where the
Junction Devices fail (refer to Figure 1). These failed Junction Devices can
lead to drop in performance as per the evaluation metrics listed above. We do
extensive simulations (elaborated in Section 5) to determine the effect of device
failures on patrolling performance.

4 MRPP-IoT Algorithm

In this section we explain the proposed patrolling strategy - MRPP-IoT Algo-
rithm. It is a decentralized strategy implemented using IoT devices placed at
nodes in the environment as well as on the patrolling vehicles. These devices
communicate amongst each other locally (recall from Section 3). While pa-
trolling agents carry out the task of surveillance, the high-level decision making
on the choice of edge traversal is offloaded to the IoT devices. Algorithms 1 and
2 correspond to parts of the algorithm running on Agent Devices and Junction
Devices respectively. Figure 2 describes the communication protocol between
these devices when a patrolling vehicle arrives at a node. The scenario is as fol-
lows - patrolling agent (say) a arrives at node v after traversing the edge (u, v).
The in-coming neighbours of v are Nin(v) = {u,w} whereas its out-going neigh-
bours are Nout = {u,w, x}. Hence, the agent cannot come to node v directly
after visiting node x. When the patrolling agent a visits the node v, following
sequence of events are proposed and described using Figure 2:

1. It requests the Junction Device placed at node v for the next node to visit
amongst the outgoing neighbours Nout(v). For this, the Agent Device a
sends the message NodeVisit to Junction Device v.

2. The Junction Device at v (if active) responds with the message NextNode.

3. The Junction Device at v also sends message NeighbourVisit to in-coming
neighbors nodes u and w in Figure 2.

With this simple communication protocol for the proposed decentralized
MRPP solution, we next decompose the action sequences for Junction Device
and Agent Device using Algorithms 1 and 2. Each Junction Device computes
and stores the Idleness values of its own and maintains the same of its out-going
neighbors
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Figure 2: Communication protocols when a patrol agent a visits node v. The
numbers in parenthesis in message box represent the order in which these mes-
sages are communicated.

In Algorithm 1, we describe the functioning of Agent Devices placed on
patrolling vehicles. At the start of the patrol, we assume that the vehicles are
placed at the junctions. Consider an agent a at junction v. The Agent Device
a sends a message to Junction Device v (Line 2) NodeVisit(a, v, t) and waits
for instructions (Line 3) from the Junction Device v. Here, t denotes a’s time
of arrival at v. The Junction Device responds (Line 5) with NextNode(a, v, u)
where u ∈ Nout(v) is the out-going neighbour that a visits next (Line 6). We
also have a fail-safe (Lines 8 - 11) if the Junction Device is malfunctioning. If the
agent doesn’t receive NextNode within a reasonable time (that is, if timeout),
the Agent Device selects one of the out-going neighbours at random (Line 9)
and the vehicle moves to that neighbour.
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Algorithm 1 Agent Device(a)

1: upon event reach Node(v) do
2: send NodeVisit(a, v, t)
3: wait for NextNode
4: upon event receive NextNode(a, v, u) do
5: traverse (v, u)

6: upon event timeout do
7: w ← sample (Nout(v))
8: traverse (v, w)

In Algorithm 2, we describe the functioning of Junction Devices placed at
the junctions in the environment. Consider the device placed at junction v.
The internal clock is set to tc = 0 (Line 2). We initialize a |Nout(v)| + 1 sized
vector I with zeroes (Lines 3-4). Each entry I(w) gives the Idleness of node
w ∈ Nout(v) ∪ {v}.

As described before, when agent a reaches junction v, it sends NodeVisit(a, v, t).
When the Junction Device at v receives this message (Lines 5-14), it responds
with an out-going neighbour (say) u ∈ Nout(v) that the agent is supposed to
visit next. First, the Junction Device updates the vector I appropriately (Lines
6-8). Since, (t − tc) duration has elapsed, each entry in I is incremented by
(t − tc). Then, the entry I(v) is set to zero as agent a has visited node v.
It, then, determines the out-going neighbour (say) vmax with highest Idleness
value2 and sends out Next Node(a, v, vmax) (Lines 10-11). Finally, the Idleness
value of node vmax is set to zero (Line 12). This ensures that no two agents are
assigned the same out-going neighbour consecutively. Finally, it sends a message
(Line 13) NeighbourVisit(a, v, t) which is received by its in-coming neighbours.

When an out-going neighbour u is visited, Junction Device at v receives a
message NeighbourVisit(a, u, t) signifying that agent a visited node u at time t
(Lines 15-21). The Junction Device then updates its I vector (Lines 16-19) to
account for this visit.

3

2if there are multiple nodes with equal Idleness values, one is selected at random
3Conflicting cases such as two agents visiting the same node is handled by serving each

agent sequentially through the Junction Device and, equal Idleness values of more than two
out-going neighbours is addressed by taking a random choice. Current proposal analyzes
the MRPP-IoT technique using the updated information available from immediate neighbors.
Future scope of this work can consider decision making by increasing the horizon of available
information among neighbors.
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Algorithm 2 Junction Device(v)

1: procedure Initialize
2: tc ← 0 . Current Time
3: for w ∈ Nout(v) ∪ {v} do
4: I(w)← 0

5: upon event receive NodeVisit(a, v, t) do
6: for w ∈ Nout(v) ∪ {v} do
7: I(w)← I(w) + (t− tc)
8: I(v)← 0
9: tc ← t

10: vmax ← maxw∈Nout(v) I(w)
11: send NextNode(a, v, vmax)
12: I(vmax)← 0
13: send NeighbourVisit(a, v, t)

14: upon event receive NeighbourVisit(a, u, t) do
15: for w ∈ Nout(v) ∪ {v} do
16: I(w)← I(w) + (t− tc)
17: if u ∈ Nout(v) then
18: I(u)← 0

19: tc ← t

5 Performance Study using Simulation Results

In order to gain acceptance of IoT for high level autonomous system level task
like decentralized multi-agent patrolling, the simulations are carried out in a
systematic manner. The simulations setting and results are obtained to sub-
stantiate the following outcomes:

• A minimal IoT framework through proposed MRPP-IoT algorithm is ca-
pable of satisfying preliminary multi-agent patrolling objective of unifor-
mity in visiting nodes.

• The need to develop novel IoT based multi-agent patrolling algorithm
MRPP-IoT as the direct implementations of existing MRPP algorithm
have a scope of performance improvements.

• The IoT devices may not be required to be placed at each and every
junction for maintaining uniformity in patrolling. In other words, if the
patrolling objective is still met with a few faulty devices.

• Observing interesting behaviors on patterns followed by the agents under
the scenarios of fully-functional IoT and partially faulty IoT devices.
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5.1 Simulation Setting

5.1.1 Simulator

We investigate the performance of the MRPP-IoT algorithm based on simu-
lations carried out on ‘Simulation of Urban MObility’(SUMO) [7], a realisitc
traffic simulator. It is an open source, highly portable, microscopic and contin-
uous traffic simulation package designed to handle large networks. We assume
empty road scenarios with patrolling agents as the only vehicles traversing the
road network. The Junction Devices are mimicked by software programs run-
ning concurrently and communicating with each other via Robot Operating
System (ROS) [quigley2009ros]. The communication between these software
programs and the agents in SUMO is done via Traffic Control Interface (TraCI),
provided in SUMO.

5.1.2 Graph Layouts

The software program netedit, supplied with SUMO, is used to create the test
layouts. Three representative graphs as shown in Figure 3 are used for analysing
the results. Graph A is a symmetric graph with 25 nodes and equal edge lengths.
Graph B also has 25 nodes but varying edge lengths with some uniformity.
Graph C is asymmetric with 28 nodes and random edge lengths. Each edge on
every graph is bidirectional, that is, for any pair of connected nodes, the agents
can traverse in either direction.

(a) Graph A (b) Graph B (c) Graph C

Figure 3: Different layouts used for simulations

5.1.3 Patrolling Strategies for Comparison

As base cases, we chose two strategies from [8] - Conscientious Reactive (CR)
and Reactive with Flags (RwF). When at a node, agents under Conscientious
Reactive strategy choose the neighbour with the highest ‘perceived’ Idleness
value. As agents do not communicate with each other, they do not know the
‘true’ Idleness values of the nodes. Whereas, agents under Reactive with Flags
can communicate with each other and hence have access to ‘true’ Idleness values
of the nodes. CR and RwF act as perfect benchmark strategies for our work
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since we assume - (i) no communication amongst agents (directly), (ii) reactive
decision making (that is, paths are planned one edge at a time).

In order to compare these strategies under the problem settings with failed
Junction Devices, we modify them such that the agents get no information about
nodes corresponding to the failed Junction Devices. We refer to the modified
strategies, henceforth, as - CR-Junction and RwF-Junction respectively.

5.1.4 Simulation Parameters

We generate a total of 540 simulations with each simulation running for 30000s
(CPU Time). For every graph layout in Figure 3, we run 60 simulations un-
der each patrolling strategy (MRPP-IoT, CR-Junction, RwF-Junction). The
number of patrolling agents in each run as well as the failed Junction Devices
was fixed throughout the duration of that simulation. For every combination
of graph layout and strategy, we had 15 runs each with 1, 3, 5 and 7 agents
respectively. These 15 runs were further divided into 5 bins of 3 repetitions
each with each bin corresponding to one of 0, 7, 12, 18 and 25 failed Junction
Devices. In summary we had, 3(Repetitions)× 5(Device Failures)× 4(Agents)×
3(Strategies)× 3(Graphs) = 540 simulation runs.

At the beginning of each simulation, each agent is spawned randomly at
the nodes and we assume Idleness value of each node is zero, as if they have
just been visited. The patrol agents can attain a maximum velocity of 10 m/s,
acceleration of 1 m/s2, and deceleration of 5 m/s2. Graph Idleness value is
computed as Average of Instantaneous Graph Idleness over 30000s.

5.2 Result Analysis

5.2.1 Graph Idleness under MRPP-IoT Algorithm

Figure 4 illustrates the performance of MRPP-IoT algorithm under all the pa-
rameter settings. On each graph layout, the Graph Idleness value increased
with increase in number of failed Junction Devices irrespective of the number
of patrolling agents in the simulation. We also observed that the amount of in-
crease in Graph Idleness reduced under higher number of agents. The Junction
Device failure impacts highly for single agent scenarios (with Graph Idleness
value increasing by a factor of 1.5× to 2× for 5 device failures). For 3 agents
or more, the performance decays very gradually as the number of device fail-
ures increase. For Graphs A and B (refer to 3), 25 failed devices implies that
the agents execute random sampling at each and every node. For simualations
with 7 agents, the Graph Idleness value under the random sampling strategy is
approximately 2× that under MRPP-IoT algorithm executed at all nodes (that
is, with 0 failed Devices).
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Figure 4: The plots of Graph Idleness values (in seconds) of each simulation
runs under MRPP-IoT algorithm with different number of agents as well as
different combinations of failed Junction Devices.

5.2.2 Temporal Analysis of Instantaneous Graph Idleness

Figure 5 contains plots of Instantaneous Graph Idleness values for a set of simu-
lation runs on Graph C (refer to 3). We observed that even though the Instanta-
neous Graph Idleness varied over short periods of time, in the long run the values
remained bounded in a particular range. In particular, with 0 Junction Device
failures, the Instantaneous Graph Idleness varied in a cyclic manner implying
that the agents’ paths converged to cyclic patterns. As failure of Junction De-
vice leads to random decision at the corresponding node (refer to Algorithm 1),
the agents’ path cannot converge to cyclic patterns and hence the Instantaneous
Graph Idleness value is chaotic with time.

Figure 5: The plots of Instantaneous Graph Idleness values (in seconds) for
simulation runs on Graph C under MRPP-IoT algorithm with (a) 1 Agent and
0 failed Devices, (b) 1 Agent and 12 failed Devices, (c) 5 Agents and 0 failed
Devices, and (d) 5 Agents and 12 failed Devices.
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5.2.3 Node Idleness under MRPP-IoT Algorithm

In Figure 6 4, we depict the Node Idleness values observed for simulation runs
on Graph C (refer to 3). The Node Idleness values of those in the center was
consistently lower than those on the boundaries of graph, irrespective of number
of agents as well as the combination of failed Junction Devices. The same was
observed for each and every simulation run irrespective of the graph layout,
the number of patrolling agents or the combination of failed Junction Devices.
The results ensure uniformity in patrolling outcomes regardless of variations in
number of agents, number of IoT Junction devices, and graph topologies.

Figure 6: The plots of Node Idleness values (in seconds) for simulation runs on
Graph C under MRPP-IoT algorithm with (a) 1 Agent and 0 failed Devices,
(b) 1 Agent and 25 failed Devices, (c) 7 Agents and 0 failed Devices, and (d) 7
Agents and 25 failed Devices.

4In subplot (b), the Node Idleness values at some nodes reached more than 2000 seconds.
For clarity and ease of comparison across the 4 plots, we have limited the color range to 1000
seconds
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Table 1: Table of Graph Idleness values averaged over 3 simulation runs for each
combination of simulation parameters.

# Agents
Graph A Graph B Graph C

RwF-Junc. CR-Junc. MRPP-IoT RwF-Junc. CR-Junc. MRPP-IoT RwF-Junc. CR-Junc. MRPP-IoT
O Junction Device failures

1 239 220 223 224 223 215 444 445 448
3 119 120 91 118 120 90 450 426 195
5 78 79 57 78 79 57 201 201 120
7 59 60 42 59 60 42 156 161 89

7 Junction Device failures
1 9041 10522 365 7747 6931 382 6931 10522 883
3 4920 6369 122 3800 5314 127 4496 8143 259
5 4008 7926 72 3890 4532 71 5948 5887 152
7 5606 2881 51 3211 3048 50 4670 6269 109

12 Junction Device failures
1 1701 4780 454 2053 1197 466 2452 3023 1024
3 1427 1551 146 1213 659 148 2014 2936 339
5 925 709 84 932 753 84 1545 2342 180
7 1489 920 56 1078 1061 58 1076 910 128

18 Junction Device failures
1 764 891 578 932 782 564 1732 2401 1255
3 431 1272 178 225 256 180 780 543 397
5 125 225 100 323 140 100 636 352 209
7 91 137 68 285 482 67 379 206 154

25 Junction Device failures
1 693 584 685 677 697 689 1708 1540 1367
3 215 230 218 207 223 217 530 460 426
5 120 217 119 122 121 125 285 272 251
7 80 80 81 82 80 80 186 192 165

5.2.4 Comparison with state of the art strategies

As mentioned previously, we use Conscientious Reactive and Reactive with Flags
patrolling strategies as base cases for studying our algorithm’s performance. In
Table 1 we have compiled the Graph Idleness values for every combination of
simulation parameters we have tested on. Except for the case with 25 Junction
Device failures, MRPP-IoT algorithm out performs both Reactive with Flags as
well as Conscientious Reactive strategies. In fact, for 7, 12 and 18 Junction De-
vice failures, both RwF-Junction and CR-Junction strategies fail spectacularly
in comparison with MRPP-IoT algorithm. This is caused as under MRPP-IoT,
the active Junction Devices account for the intent of patrolling vehicles (refer
to Algorithm 2). They reset, in their internal memory, the Idleness value of the
agent’s next node of visit to zero. This minor modification accounts for signifi-
cant improvement in performance under cases with Junction Device failures.
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For fully functional IoT (zero failure in Junction Device) and more than one
patrolling agents, MRPP-IoT algorithm performs better than RwF-Junction
and CR-Junction consistently. While for the single agent case the three strate-
gies are indistinguishable and hence the difference in values noticed in Table 1
is mainly due to varying initial conditions.

Figure 7 depicts the Node Idleness values for simulation runs on Graph C
with 3 patrolling agents. The distribution of Node Idleness values under both
RwF-Junction as well CR-Junction is almost identical to that under MRPP-
IoT. Specifically, the Idleness of nodes in the center is less compared to those
on the boundaries.

Figure 7: The plots of Node Idleness values (in seconds) for simulation runs on
Graph C with 3 agents patrolling under different strategies. Plots in the top
row are cases with zero device failures while those in the bottom row are cases
with 25 device failures.

6 Conclusion

Through this paper, we present a novel approach to Multi Robot Patrolling
Problem which is motivated to provide practical solution for city wide patrolling.
Suggestion here is to set-up an IoT framework where Junction Devices are placed
at every junction in the environment. These Junction Devices can be low-cost
modular IoT devices which have minimal storage, basic computing powers and
one-to-one communication capabilities. One-to-one communication with min-
imal message exchange is motivated to facilitate secured communication. We
deviate from the conventional perspective of decentralized strategies with agent
based decision making, as seen commonly in literature (refer to Section 2), and
suggest the Junction Device based local decision making. The communication
between Junction Devices and Agent Devices is assumed to be primitive (one
message per decision) (refer to Section 3), our strategy can also be implemented
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in an existing large scale patrolling setup involving human driven patrol agents
by substituting the Junction Devices as decision makers rather than the po-
licemen, thereby utilizing the benefit of both human intelligence gathering ca-
pabilities and bias-free objective decision making capabilities of an automated
system.

In the Section 4, we have explained our proposed patrolling strategy ‘Multi
Robot Patrolling Problem - Internet of Things’ (MRPP-IoT) algorithm. This
algorithm consists of two parts - (i) Agent Device part and (ii) Junction Device
part (refer to Algorithms 1 and 2) running concurrently on patrolling agents
and junction devices respectively. The Junction Devices interact with each
other locally to obtain Idleness information in their neighbourhood and then
carry out reactive decision making providing the patrol agents with next node
to visit.

We implement MRPP-IoT algorithm on a realistic simulation framework us-
ing SUMO and ROS. SUMO provides us with realistic motion simulation of
patrolling agents while we use ROS to setup communication between different
Junction Devices and Agent Devices. The performance study is presented in
Section 5. We use two base case strategies - Conscientious Reactive and Reative
with Flags (RwF) to benchmark our algorithm’s performance. We analyze our
algorithm’s decay in performance to Junction Device failures and observe that
with increasing number of patrolling agents, the strategy becomes more robust.
MRPP-IoT outperforms both CR as well as RwF strategies under full commu-
nication as well as cases with failed Junction Devices. In fact, CR as well as
RwF strategies fail completely under device failures (refer to Table 1 justifying
the need for MRPP-IoT Algorithm.

The current work makes a base case for IoT to solve multi-agent patrolling.
Various edge computing methods would certainly benefit in addressing chal-
lenging objectives of multi-agent patrolling. These objectives could be to solve
prioritized patrolling, randomized patrolling or human-in-loop patrolling. While
we have extensively studied the robustness against IoT device failures and devel-
oped MRPP-IoT algorithm, robustness against hacked IoT devices would bring
interesting settings for the IoT based MRPP.
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